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BACKGROUND: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exac-
erbates asthma among populations around the world and may also contribute to new-onset asthma.
OBJECTIVES:We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate
matter (PM2:5), ozone, and nitrogen dioxide (NO2) concentrations.
METHODS: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence,
and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using pub-
lished survey data.
RESULTS:We estimated that 9–23 million and 5–10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and
PM2:5, respectively, representing 8–20% and 4–9% of the annual number of global visits, respectively. The range reflects the application of central
risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for ∼ 37% and 73% of ozone and PM2:5
impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and
PM2:5 (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India.

CONCLUSIONS: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also
identified key uncertainties and data limitations to be addressed to enable refined estimation. https://doi.org/10.1289/EHP3766

Introduction
Approximately 358 million people worldwide were estimated to
have had asthma in 2015 (GBD 2015 Chronic Respiratory Disease
Collaborators 2017), including about 14% of the world’s children
(Global Asthma Network 2014). Asthma prevalence is considered
the fourth leading cause of years lived with disability (YLDs) for
children ages 5–14 globally, and the 16th leading cause of YLDs
for all ages (GBD 2015 Chronic Respiratory Disease Collaborators
2017). Asthma is among the top causes of YLDs among children
ages 5–14 across all sociodemographic index categories, affecting
both high- and low-income populations. Economic costs are sub-
stantial and include both direct [e.g., inpatient care, emergency
room visits (ERVs), physician visits, diagnostic tests, and medica-

tion] and indirect costs (e.g., school and work days lost; Bahadori
et al. 2009). Epidemiological and clinical experimental studies
have shown over decades that exposure to air pollution is a key
risk factor for asthma exacerbation and may also contribute to
new-onset asthma (Guarnieri and Balmes 2014; Toskala and
Kennedy 2015).

Ambient fine particulate matter (PM2:5) exposure, currently
considered the leading environmental risk factor globally, is esti-
mated to be associated with 4.2 million premature deaths and 103
million Disability Adjusted Life Years (DALYs, YLDs plus
Years of Life Lost) in 2015 (Cohen et al. 2017). Updated for
2016, the PM2:5 disease burden estimate includes 4.1 million
deaths and 106 million DALYs (GBD 2016 Risk Factors
Collaborators 2017). This global burden attributable to PM2:5
accounts for 27% of all DALYs from chronic obstructive pulmo-
nary disease (COPD; an additional 6% are attributable to ambient
ozone); 20% of those from ischemic heart disease; 16% of those
from stroke; 17% of those from tracheal, bronchus, and lung can-
cer; and 31% from child acute lower respiratory infections (GBD
2016 Risk Factors Collaborators 2017). The Global Burden of
Disease Study 2016 estimated that smoking and occupational asth-
magens were each responsible for 10% of DALYs from asthma in
2016 (GBD 2015 Chronic Respiratory Disease Collaborators
2017).

The contribution of air pollution to asthma exacerbation and
new asthma incidence remains unquantified and has not been
included in global burden of disease studies (Cohen et al. 2017;
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GBD 2016 Risk Factors Collaborators 2017; WHO 2016, 2017a).
Estimates of air pollution’s impact on asthma in individual coun-
tries or sets of cities suggest that the global burden could be sub-
stantial (Fann et al. 2012; Perez et al. 2013). Nitrogen dioxide
(NO2) has not yet been included in global burden of disease
assessments but is associated with asthma exacerbation and inci-
dence (Orellano et al. 2017; Zhang et al. 2016; Zheng et al. 2015)
and has been considered a key pollutant in country- and city-
level air pollution impact estimates (Walton et al. 2015). Here we
quantitatively estimate asthma ERVs and, as a secondary analy-
sis, new asthma cases that may be attributable to ambient ozone,
PM2:5, and NO2 globally. We use epidemiologically derived
health-impact functions combined with datasets on population,
baseline asthma incidence and prevalence rates, and pollutant
concentrations. As these first estimates of the global asthma bur-
den from ambient air pollution are subject to many important
assumptions and uncertainties, we anticipate that future studies
will further advance the input data and methods piloted here.

Methods
The analytical process is similar to that typically used to estimate
air pollution-related premature deaths (Anenberg et al. 2010), but
uses data that are specific to asthma. We first combined national
asthma incidence and prevalence rates and a newly constructed
dataset of asthma ERV rates from survey data in 54 countries and
Hong Kong (Table 1 and Figures S1 and S2) with globally gridded
population counts to estimate the baseline number of new asthma
cases and asthma ERVs at 0:1� × 0:1� resolution. We then esti-
mated the pollution-attributable fraction of asthma ERVs and new
asthma cases using globally gridded pollution concentrations,
derived from satellite remote sensing and chemical transport mod-
eling (0:1� × 0:1� resolution; Figure 1), with concentration–
response factors drawn from several multinational meta-analyses
of epidemiological studies (Table 2). These epidemiological stud-
ies examined associations between air pollutants and both asthma
exacerbation and incident asthma in 27 countries spanning North
America, Europe, Asia, and Latin America (Table S1). We used
best practices in data reporting outlined by the Guidelines for
Accurate and Transparent Health Estimates Reporting (GATHER)
(Stevens et al. 2016).

Concentration–Response Factors
Concentration–response factors for asthma exacerbation and
incidence were taken from meta-analyses of epidemiological
studies that combined multiple individual studies from different
countries into pooled risk estimates. We first conducted a litera-
ture review to identify meta-analyses of epidemiological stud-
ies on air pollution and asthma, using MEDLINE, PubMed, and
Google Scholar, supplemented with additional reviews of U.S.
Environmental Protection Agency Integrated Science Assess-
ments for PM2:5 (U.S. EPA 2009) and ozone (U.S. EPA 2015a).
We limited the search to meta-analyses pooling results from ep-
idemiological studies across multiple countries to derive rela-
tive risk (RR) estimates that might be most generalizable to the
global population. We included only studies that were written
in English and reported a numerical concentration–response
relationship accompanied by an estimate of precision. We ex-
cluded studies that only examined personal exposure rather
than ambient concentrations (because the concentration esti-
mates we use do not represent personal exposure) or that only
included lung function tests.

Based on these criteria, we found 10 meta-analyses on short-
term exposure to air pollution (including ozone, PM2:5, and NO2)
and asthma exacerbation or prevalence and six meta-analyses on

long-term exposure to air pollution (including PM2:5 and NO2)
and asthma incidence. Our search did not identify any multina-
tional meta-analyses reporting a significant relationship between
ozone and asthma incidence, though some individual studies
report increased risk (Anderson et al. 2013; McConnell et al.
2002). Although some studies examined relationships between
asthma and PM10 concentrations, we focused on PM2:5 because
globally gridded concentration estimates are not available for
PM10.

Asthma exacerbation endpoints were either self-reported
increase of symptoms (Karakatsani et al. 2012) or more com-
monly, asthma-related ERVs and/or hospital admissions. We
identified three asthma exacerbation studies that addressed ozone,
PM2:5, and NO2 for all ages, children, and adults (Orellano et al.
2017; Zhang et al. 2016; Zheng et al. 2015), and used these stud-
ies for the core results because they included the broadest range
of populations, pollutants, and ages. We found six additional
meta-analyses reporting relationships between asthma ERVs and
PM2:5 and NO2 for children only (Fan et al. 2016; Favarato et al.
2014; Gehring et al. 2015; Lim et al. 2016; Mölter et al. 2015;
Weinmayr et al. 2010). We excluded two studies that had the nar-
rowest age ranges (Gehring et al. 2015; Mölter et al. 2015). We
also excluded one study that relied on self-reported asthma symp-
toms rather than official hospital records or medical diagnoses. In
total, we used seven of the 10 meta-analyses found in our litera-
ture review for asthma exacerbation. From each of these studies,
we extracted the concentration–response functions that we judged
to be most broadly representative of exposures among the general
population (e.g., all year versus warm or cold season only, pooled
all individual studies rather than only statistically significant stud-
ies, included both men and women, etc.), without regard for the
magnitude or significance of the risk estimates. We used RRs for
combined ERVs and hospital admissions to take advantage of the
largest number of underlying studies in the meta-analyses and the
largest number of meta-analyses, as only a subset of studies and
meta-analyses reported RRs specifically for ERVs (e.g., Orellano
et al. 2017 reported RRs only for ERVs and hospital admissions
together). Ideally, a broad category of asthma exacerbations
would most comprehensively account for the effect of air pollu-
tion on worsening asthma symptoms, as only a portion of exacer-
bations end in ERVs or hospital admissions (e.g., Pollart et al.
2011). We judged that using the combined ERV and hospital
admission RRs would capture more of the exacerbation effect of
pollution, in comparison with using only ERV or hospital admis-
sion RRs.

For asthma incidence, we identified two meta-analyses of
long-term epidemiological studies that included PM2:5 and NO2
and asthma development among all ages (Anderson et al. 2013;
Jacquemin et al. 2015). Neither study reported significant associ-
ations for PM2:5, but one reported a significant association for
NO2 (Anderson et al. 2013). We also found three meta-analyses
examining traffic-related PM2:5 and NO2 associations with
asthma development among children (Bowatte et al. 2015;
Gasana et al. 2012; Khreis et al. 2017), and one on NO2 from any
source and children (Takenoue et al. 2012). For children, two of
the four analyses (Bowatte et al. 2015; Khreis et al. 2017) exam-
ining PM2:5 (both traffic-related studies) and all five analyses
examining NO2 (Anderson et al. 2013; Bowatte et al. 2015;
Gasana et al. 2012; Khreis et al. 2017; Takenoue et al. 2012)
reported significant associations with pediatric asthma develop-
ment. To estimate PM2:5 and NO2-attributable asthma incidence,
we applied RR estimates for all ages from Anderson et al. (2013)
and Jacquemin et al. (2015). We also estimated PM2:5 and
NO2-attributable pediatric asthma incidence using RR estimates
from Anderson et al. (2013) and from the most recent of the
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Table 1. Fraction of asthma group visiting the emergency room per year in each country, with data source.

Country Study Study Surveya Fraction visiting emergency roomb

Algeria Nafti et al. 2009 AIR 0.379
Argentina Neffen et al. 2010 AIR 0.417
Australia Thompson et al. 2013 AIM 0.150
Austria Price et al. 2014 REALISE 0.239
Belgium Price et al. 2014 REALISE 0.239
Brazil Neffen et al. 2010 AIR 0.417
Bulgaria Rabe et al. 2004 AIR 0.207
Canada Sastre et al. 2016 AIR 0.280
Chile Neffen et al. 2010 AIR 0.417
China Weightedc 0.329

Rabe et al. 2004 AIR 0.190
Zainudin et al. 2005 AIR 0.315
Thompson et al. 2013 AIM 0.40
Su et al. 2013 AIR 0.339

Colombia Neffen et al. 2010 AIR 0.417
Costa Rica Neffen et al. 2010 AIR 0.417
Croatia Rabe et al. 2004 AIR 0.207
Czech Republic Rabe et al. 2004 AIR 0.207
Ecuador Neffen et al. 2010 AIR 0.417
Ethiopia Zemedkun et al. 2014 ACT 0.312
Finland Price et al. 2014 REALISE 0.239
France Weighted 0.079

Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239

Germany Weighted 0.195
Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239
Sastre et al. 2016 AIM 0.180

Hungary Rabe et al. 2004 AIR 0.207
India Thompson et al. 2013 AIM 0.420
Italy Weighted 0.143

Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239
Sastre et al. 2016 AIM 0.150
Allegra et al. 2012 PRISMA 0.065
Corrado et al. 2013 Survey of patients in 16

Italian pulmonary units
0.499

Japan Rabe et al. 2004 AIR 0.130
Jordan Khadadah et al. 2009 AIR 0.520
Kuwait Khadadah et al. 2009 AIR 0.520
Latvia Rabe et al.2004 AIR 0.207
Lebanon Khadadah et al. 2009 AIR 0.520
Lithuania Rabe et al. 2004 AIR 0.207
Malaysia Weighted 0.246

Rabe et al. 2004 AIR 0.190
Zainudin et al. 2005 AIR 0.120
Thompson et al. 2013 AIM 0.400
Neffen et al. 2010 AIR 0.417

Morocco Nafti et al. 2009 AIR 0.210
Netherlands Weighted 0.195

Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239

Nigeria Desalu et al. 2013 GAPP 0.427
Norway Price et al. 2014 REALISE 0.239
Oman Khadadah et al. 2009 AIR 0.520
Peru Neffen et al. 2010 AIR 0.417
Philippines Weighted 0.211

Rabe et al. 2004 AIR 0.19
Zainudin et al. 2005 AIR 0.252

Poland Rabe et al. 2004 AIR 0.207
Romania Rabe et al. 2004 AIR 0.207
Russia Rabe et al. 2004 AIR 0.207
Singapore Weighted 0.164

Rabe et al. 2004 AIR 0.190
Zainudin et al. 2005 AIR 0.114
Thompson et al. 2013 AIM 0.170

aNote: ACT, International Asthma Control Test; AIM, Asthma Insights and Management Survey; AIR, Asthma Insights and Reality Survey; GAPP, Global Asthma Physician and
Patient survey; PRISMA, Prospective Study on Asthma Control; Realise, Recognise Asthma and Link to Symptoms and Experience Survey.
bThe studies reported the rate of ERVs and hospital admissions among study participants, which we used as nationwide rates, assuming the survey sample was nationally
representative.
cFor countries where more than one asthma ERV rate were available from the included surveys, we weighted the rates based on study sample size and used this rate for the total coun-
trywide rate.
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meta-analyses focusing explicitly on traffic-related pollution,
Khreis et al. (2017). All RR estimates considered are listed in
Table 2. In total, we used three of the six meta-analyses found in
our literature review for asthma incidence. One of these meta-
analyses reported ranges of 8 to 34lg=m3 PM2:5 and 0 to
61:7 ppb NO2 (Jacquemin et al. 2015). Concentration ranges in
the other two meta-analyses were unreported but are unlikely to
be substantially wider because all three meta-analyses were lim-
ited to epidemiological studies conducted in the United States
and Europe (Anderson et al. 2013; Khreis et al. 2017). Several
meta-analyses indicated that most underlying epidemiological
studies focused on within-city variation in exposure levels, and
studies comparing exposures between communities did not show
significant associations with asthma incidence (Anderson et al.
2012, 2013). To more closely capture asthma incidence from the
increment of exposure over background levels within each com-
munity, we focused on the health burden due to anthropogenic
contributions. This method could still overestimate asthma inci-
dence from air pollution because background concentrations
within communities are also influenced by regional anthropo-
genic emissions.

Central RR estimates for asthma ERVs among all ages ranged
from 1.01–1.03 per 10lg=m3 increase in PM2:5, 1.02–1.05 per
10 ppb increase in ozone, and 1.02–1.03 per 10 ppb increase in
NO2 (Table 2). For pediatric incident asthma, central RR esti-
mates ranged from 1.34–1.93 per 10 lg=m3 PM2:5 and 1.10–1.28
per 10 ppb NO2. These relationships were all based on single-
pollutant models that did not control for other pollutants; thus,
there may be overlap between asthma effect estimates for ozone,
PM2:5, and NO2. As these meta-analyses used different methods,

captured different sets of studies (with some overlap), and often
examined different models and subgroups, we applied RR esti-
mates from multiple studies separately. Of the 87 studies
included by Zheng et al. (2015), 12 studies were overlapping
with Zhang et al. (2016) and nine studies were overlapping with
Orellano et al. (2017). Zheng et al. (2015) and Zhang et al.
(2016) had only two studies in common. Concentrations ranges
included in the underlying epidemiological studies were reported
by two of the three meta-analyses, and ranged from 6.1 to
45:3 lg=m3 PM2:5, 2 to 98:3 ppb ozone, and 5.4 to 92:7 ppb NO2
(Zhang et al. 2016; Zheng et al. 2015). The third meta-analysis is
likely to also include wide concentration ranges because the
underlying epidemiological studies were conducted in 12 differ-
ent countries spanning relatively clean locations (e.g., Australia,
Canada) to relatively polluted locations (e.g., China; Orellano
et al. 2017).

Health Impact Functions
We used the “attributable fraction” approach to estimate asthma
ERVs and new asthma cases attributable to each pollutant (e.g.,
Miettinen 1974), following other air pollution health impact
assessments (e.g., Anenberg et al. 2010; Cohen et al. 2017; Fann
et al. 2012). It is unclear based on these meta-analyses whether
the concentration–response functions between pollutant and
asthma effect are linear or nonlinear. Several of the studies indi-
cate that the results given describe linear relationships (Lim et al.
2016; Orellano et al. 2017; Zhang et al. 2016; Zheng et al. 2015),
whereas the others did not specify the functional shape
(Anderson et al. 2013; Fan et al. 2016; Jacquemin et al. 2015).

Table 1. (Continued.)

Country Study Study Surveya Fraction visiting emergency roomb

Slovak Republic Rabe et al. 2004 AIR 0.207
Slovenia Rabe et al. 2004 AIR 0.207
South Korea Weighted 0.148

Zainudin et al. 2005 AIR 0.058
Rabe et al. 2004 AIR 0.190
Thompson et al. 2013 AIM 0.160

Spain Weighted 0.235
Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239
Sastre et al. 2016 AIM 0.360

Sweden Weighted 0.184
Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239

Thailand Weighted 0.350
Thompson et al. 2013 AIM 0.350
Boonsawat et al. 2015 AIM 0.350

Tunisia Nafti et al. 2009 AIR 0.254
Turkey Turktas et al. 2010 AIR 0.233
Ukraine Rabe et al. 2004 AIR 0.207
United Arab Emirates Weighted 0.400

Khadadah et al. 2009 AIR 0.520
Mahboub et al. 2010 AIR 0.280

United Kingdom Weighted 0.175
Rabe et al. 2004 AIR 0.100
Price et al. 2014 REALISE 0.239
Sastre et al. 2016 AIM 0.090

United States Rabe et al. 2004 AIR 0.230
Uruguay Neffen et al. 2010 AIR 0.417
Venezuela Neffen et al. 2010 AIR 0.417
Vietnam Weighted 0.206

Rabe et al. 2004 AIR 0.190
Zainudin et al. 2005 AIR 0.225

Hong Kong Weighted 0.168
Thompson et al. 2013 AIM 0.150
Zainudin et al. 2005 AIR 0.164
Rabe et al. 2004 AIR 0.190
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Linear functions would imply that the same change in risk per
unit concentration change would occur in very polluted and very
clean atmospheres. Other diseases caused by PM2:5 appear to
have nonlinear relationships that flatten out at high concentrations
(Burnett et al. 2014; Cohen et al. 2017). Here, to account for
potential flattening of the concentration–response relationship at
very high concentrations, we applied log-linear relationships for
PM2:5, ozone, and NO2. The log-linear and linear functions describe
similar concentration–response relationships within the range of
concentrations found in most developed countries (∼ 5–50lg=m3

PM2:5) and begin to diverge at higher concentrations found in many
developing countries (>50lg=m3). We estimated 3–8% more
asthma ERVs globally associated with ozone and PM2:5 using a lin-
ear rather than log-linear function.Nevertheless, the lack of informa-
tion about the shape of the concentration–response function or
heterogeneity in risk estimates at different concentration levels is a
limitation.

The health impact function for the change in asthma ERVs at-
tributable to PM2:5, ozone, or NO2 (DERV) is:

DERV =Popa × Prevc,a × ERVc × ð1− e−bXÞ, (1)

where Pop is the gridded population for age group a, Prev is
asthma prevalence for country c and age group a, ERV is the frac-
tion of total number of individuals with asthma visiting the emer-
gency room in the last year for country c, b is the concentration–
response factor from the meta-analyses of epidemiological stud-
ies, and X is the gridded pollutant concentration in 2015.

The health impact function for asthma incidence attributable
to PM2:5 or NO2 (DAsthma) is:

DAsthma=Popa × Incc,a × ð1− e−bXÞ, (2)

where Inc is the asthma incidence rate for country c and age
group a.

We applied these health impact functions in each 0:1� × 0:1�
grid cell globally, separately for each pollutant and concentration–
response factor. For estimates of the asthma burden attributable to
anthropogenic-only concentrations, we subtracted the gridded

Figure 1. Pollutant concentrations used to estimate asthma impacts. (A) PM2:5 concentrations (annual average, in lg=m3) in 2015, described by van Donkelaar
et al. (2016; max concentration= 179:8 lg=m3). (B) Ozone concentrations in 2015 (annual average of 8hr daily maximum, in ppb), using multi-model average
from TF HTAP ensemble (max concentration= 72:9 ppb). (C) NO2 concentrations in 2015 (annual average, in ppb), using satellite-derived dataset from method
described by Lamsal et al. (2008) and adjusted by modeled ratio of daily average to 1–2 P:M: ð1300–1400 hoursÞ concentration (max concentration= 17:5 ppb).
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burden from natural concentrations from the gridded burden using
total concentrations.

Uncertainty bounds for health impacts were calculated by
applying the 2.5 percentile or 97.5 percentile of the RR estimate,
following Anenberg et al. (2010). Each input to the health impact
function is uncertain, including estimated concentrations, base-
line disease rates, asthma ERV rates, the concentration–response
factor, and the existence and magnitude of population-level low-
concentration thresholds, below which air pollutants would not
affect asthma. Uncertainty estimates are available for some of
these variables (PM2:5 concentrations, baseline disease rates, con-
centration–response factor), but not others (ozone and NO2 con-
centrations, asthma ERV rates, low-concentration thresholds).
For ozone and NO2 concentrations, output from multiple model-
ing studies are available at global scales to quantify model vari-
ability in concentration estimates. However, this variability
reflects differences between models and their parameterizations
and not necessarily errors in their concentration estimates, which
are more difficult to evaluate globally given the paucity of obser-
vational data outside the United States, Europe, and parts of Asia.
For this pilot analysis, we simplify the treatment of uncertainty
by incorporating only error in the concentration–response func-
tions, as the air pollution–asthma RRs are a key novel aspect of
this study and likely to contribute most to differences in results
that were calculated separately for each RR. The choice of RR
was also found to be the most influential source of uncertainty in
estimating the global burden of air pollution on mortality (Ostro
et al. 2018). Because our resulting confidence intervals reflect
only the error in the concentration–response factor for each epi-
demiological meta-analysis, reported confidence intervals (CIs)
should be interpreted within the context of the larger uncertainty
surrounding the entire analysis, as has been cautioned elsewhere
(Hubbell et al. 2005). In future work, it should be feasible to

generate more comprehensive uncertainty intervals that incorpo-
rate error in PM2:5 concentrations and baseline disease rates,
though additional advances in estimating uncertainty around
global ozone and NO2 concentrations, asthma ERV rates, and
other health impact function inputs will be needed to fully char-
acterize uncertainties in the results.

PM2:5, Ozone, and NO2 Concentrations
We used globally gridded annual average surface PM2:5 concentra-
tion estimates (maximum concentration 179:8 lg=m3) for 2015 at
0:1� × 0:1� resolution developed using information from satellites,
a chemical transport model, and in situ monitors (van Donkelaar
et al. 2016). Aerosol optical depth from multiple satellite products
was combined with a simulation using the GEOS-Chem chemical
transport model, followed by geographic weighted regression to
fuse the PM2:5 estimates with in situ monitors. The resultant PM2:5
estimates were highly consistent (R2 = 0:81) with out-of-sample
cross-validated PM2:5 concentrations from in situ monitors.
Although the asthma exacerbation studies examined short-term
daily exposures, we used annual average concentrations, following
previous studies applying longer-term average concentrations with
RR estimates from acute ozone and PM2:5 exposures (West et al.
2006; Anenberg et al. 2009; Fann et al. 2012). Using annual aver-
age concentrations has several advantages: computational effi-
ciency and the ability to use datasets that assimilate satellite
observations with chemical transport models. Because the concen-
tration–response functions applied here are near-linear, using an-
nual averages is not expected to introduce a substantial amount of
error. This method is further supported by only 3–8% differences
in estimated ozone and PM2:5-attributable asthma ERVs when
using a linear health impact function in comparison with the log-
linear one used in the main results; using a linear model, the sum

Table 2. Relative risks (RRs), extracted from meta-analyses of epidemiological studies, which were used for estimating asthma impacts [95% confidence inter-
vals (CI) in parentheses]. RRs are reported per 10 lg=m3 for PM2:5 and per 10 ppb for ozone and NO2 (RRs reported per 10lg=m3 were converted to RRs per
10 ppb assuming ambient pressure of 1 atmosphere and temperature of 25°C).

Pollutant Study Concentration range
Relative Risk –

all ages
Relative Risk –

pediatric (<18 years)
Relative Risk – adult

(18–64 years)

Relative Risk –
elderly

(65 years and older) Used?

Short-term exposure and asthma exacerbation
PM2:5 Orellano et al. (2017) NR 1.03 (1.01–1.05) – – – Core

Zheng et al. (2015) 6–45 lg=m3 1.02 (1.02–1.03) 1.03 (1.01–1.04) 1.03 (1.01–1.05) 1.02 (1.01–1.03) Core
Zhang et al. (2016) 21–46lg=m3 1.01 (1.00–1.03) 1.02 (1.02–1.03) 1.02 (1.01–1.03) 1.02 (1.01–1.03) Core
Fan et al. (2016) 8–115lg=m3 – 1.04 (1.02–1.05) 1.02 (1.01–1.03) – SA – Pediatric
Lim et al. (2016) 7–65 lg=m3 – 1.05 (1.03–1.07) – – SA – Pediatric

Ozone Orellano et al. (2017) NR 1.03 (1.01–1.06) – – – Core
Zheng et al. (2015) 2–89 ppb 1.02 (1.01–1.02) 1.02 (1.01–1.02) 1.03 (1.02–1.04) 1.02 (1.00–1.03) Core
Zhang et al. (2016) 17–100 ppb 1.05 (1.04–1.07) 1.06 (1.04–1.07) 1.05 (1.00–1.11) 1.05 (1.03–1.06) Core

NO2 Orellano et al. (2017) NR 1.02 (1.01–1.04) 1.04 (1.00–1.08) – – Core
Zheng et al. (2015) 5–93 ppb 1.03 (1.03–1.04) 1.03 (1.03–1.04) 1.02 (1.01–1.03) 1.04 (1.03–1.05) Core
Zhang et al. (2016) 12–77 ppb 1.03 (1.02–1.05) 1.07 (1.05–1.09) 1.02 (0.98–1.07) 1.05 (1.03–1.07) Core
Favarato et al. (2014) 2–52 ppb – 1.12 (1.00–1.22) – – SA – Pediatric
Weinmayr et al. (2010) 4–90 ppb – 1.06 (1.00–1.12) – – SA – Pediatric

Long-term exposure and asthma incidence
PM2:5 Anderson et al. (2013) NR 1.16 (0.98–1.37) 1.34 (0.96–1.86) – – Core

Jacquemin et al. (2015) 8–34 lg=m3 1.08 (0.77–1.51) – – – Core
Khreis et al. (2017) NR – 1.34 (1.11–1.63) – – Core
Bowatte et al. (2015) NR – 1.93 (1.00–3.71) – – No
Gasana et al. (2012) NR – 1.40 (0.77, 2.56) – – No

NO2 Anderson et al. (2013) NR 1.14 (1.04–1.26) 1.10 (1.02–1.20) 1.93 (1.28–2.96) – Core
Jacquemin et al. (2015) 0–62 ppb 1.20 (0.98–1.43) – 1.08 (0.96–1.21) 1.02 (0.94–1.12) Core

Age <50 Age ≥50
Khreis et al. (2017) NR – 1.26 (1.10–1.37) – – Core
Bowatte et al. (2015) NR – 1.18 (0.93–1.48) – – No
Gasana et al. (2012) NR – 1.28 (1.12–1.50) – – No
Takenoue et al. (2012) NR – 1.14 (1.03–1.25) – – No

Note: –, no information was collected at that particular examination point; NR,Not Reported; SA, SensitivityAnalysis.
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of daily impact results estimated using daily concentrations would
be equal to annual impacts estimated using annually averaged
concentrations.

To estimate asthma ERVs attributable to just the anthropo-
genic portion of each pollutant, we subtracted the asthma burden
from modeled natural background concentrations. Natural back-
ground concentrations were simulated using the GEOS-Chem
chemical transport model with combustion emissions of all spe-
cies (including from biomass burning) removed. We considered
soil dust concentrations to be natural, although they can be sub-
ject to human influence, including from land-use changes, popu-
lation density, and already-realized influence of anthropogenic
climate change.

For ground-level ozone, which is not easily detected using
satellites (Martin 2008), we used gridded multimodel mean con-
centrations for the year 2010 simulated by an ensemble of five
chemical transport models organized for Phase 2 of the Task
Force on Hemispheric Transboundary Air Pollution (TF HTAP)
project (Galmarini et al. 2017): CHASER_re1 (Sudo et al. 2002),
CHASER_t106 (Sudo et al. 2002), EMEP_rv48 (Simpson et al.
2012), GEOS-Chem adjoint (Henze et al. 2007), and HadGEM2-
ES (Collins et al. 2011). Model configurations and details were
described by Galmarini et al. (2017). Concentrations were
regridded to a common 0:1� × 0:1� grid and then averaged. We
used annual average daily 8-h maximum ozone concentrations
(maximum concentration= 72:9 ppb). Using an annual average is
consistent with the RR estimates from the meta-analyses, which
reported ozone RR estimates for the full year. One meta-analysis
found that ozone RR estimates for asthma were similar between
warm and cold seasons (Zheng et al. 2015). Because several of
the meta-analyses did not distinguish which metric was used to
derive the pooled risk estimates, we present results using the
daily 8-h maximum because it is between the 24-h average and 1-
h maximum in terms of magnitude. Standard deviations in simu-
lated concentrations across the five TF HTAP models were gen-
erally greatest in areas with large biomass burning or biogenic
influences, because the TF HTAP models only harmonized
anthropogenic emissions and not natural emissions (Figure S3).

We used surface NO2 concentrations (maximum
concentration= 17:5 ppb) for 2015 from a dataset developed
from satellite observations, following Lamsal et al. (2008).
Column NO2 observations from Ozone Monitoring Instrument
(OMI) onboard the Aura satellite were gridded to 0:1� ×0:1� reso-
lution, and satellite-derived ground-level concentrations were esti-
mated using vertical structure from the GMI-Replay chemical
transport model. Concentrations are annual average at the Aura sat-
ellite sun-synchronous overpass time of ∼ 1:45 P:M: ð1345 hoursÞ
local time. These concentrations could underestimate actual expo-
sures because midafternoon concentrations are typically at a low
point of the diurnal NO2 concentration cycle, resulting from a
combination of fewer emissions between the morning and evening
rush hours, high boundary layer heights, and photolysis of NO2 to
NO (Lamsal et al. 2008). We therefore multiplied the satellite-
derived exposure estimates by the gridded ratio of 24-h average to
1–2 P:M: ð1300–1400 hoursÞ NO2 concentrations simulated by the
GMI-Replay model at 2� ×2:5� resolution for the year 2010
(Figure S3). Resulting NO2 concentrations used to estimate health
impacts are annual average of the 24-h average concentration in
each gridcell. Because our 0:1� × 0:1� grid is too coarse to resolve
near-roadway concentrations, these concentrations are still likely
lower than the measured concentrations used in epidemiological
studies focusing on traffic-related air pollution in particular.
Because the use of satellite-derived NO2 concentrations is rela-
tively novel for global health impact assessment, we compared the
annual average surface derived from Aura OMI with those deri-

ved from the Dutch OMI NO2 (DOMINO) data product V2.0
(Boersma et al. 2011), finding only minor differences (Figure S3).

Demographics and Baseline Asthma Rates
We used global gridded population of the world from the Center
for International Earth Science Information Network (CIESIN)
Gridded Population of the World v4 for the year 2015, regridding
the 30 arc-second resolution to 0:1� × 0:1� (total population 7.34
billion). We obtained country- and age-specific incidence and
prevalence rates for asthma (defined by ICD-10 code J45–J45.5,
J45.8–J45.9, and ICD-9 code 493–493.4, 493.8–493.9) from the
Institute for Health Metrics and Evaluation (IHME) for 2015
(GBD 2015 Chronic Respiratory Disease Collaborators 2017).
The definition of asthma was a reported diagnosis by a physician,
with wheezing in the past 12 months, though asthma can also
have clinical subphenotypes (Anderson et al. 2013). National
asthma incidence and prevalence rates were estimated using the
DisMod MR 2.1 modeling tool (earlier version described by
Barendregt et al. 2003) with input data from the following sour-
ces: WHO Study on Global Aging and Adult Health series, the
WHO World Health Survey series, the Belgian Health Interview
Survey, studies carried out as part of the International Study of
Asthma and Allergies in Childhood (ISAAC) collaboration,
claims data in the United States, and other sources for individual
countries where available (GBD 2015 Chronic Respiratory
Disease Collaborators 2017). In the absence of data from a partic-
ular geography (country or in limited cases, subnational adminis-
trative regions), information from the parent geography was
used. The percentage of geographies with data on asthma rates
(65%) was relatively high in comparison with many other dis-
eases, including ischemic heart disease (51%) and COPD (32%).
The top five countries for both asthma incidence and prevalence
were India, China, Brazil, Indonesia, and the United States,
driven largely by population size (GBD 2015 Chronic Resp-
iratory Disease Collaborators 2017). We used the IHME datasets
to calculate pediatric (under 18 y), adult (18–64 y), and elderly
(65 y and older) populations. Country-specific baseline disease
rates are uncertain, particularly in countries where rates were mod-
eled rather than derived empirically (GBD 2015 Chronic Resp-
iratory Disease Collaborators 2017), and estimated pollution-
attributable asthma impacts would scale linearly with a change in
the baseline disease rate.

We used asthma ERVs as a proxy for asthma exacerbation,
though many cases of exacerbation may be self-treated with med-
ication and may not manifest in an ERV. To estimate pollution-
attributable asthma ERVs, we constructed a dataset of the rate of
ERVs among asthmatics around the world. We conducted a lit-
erature review and identified 16 studies surveying health care
utilization rates among asthmatics in 54 countries and Hong
Kong (Table 1; Allegra et al. 2012; Boonsawat et al. 2015;
Corrado et al. 2013; Desalu et al. 2013; Mahboub et al. 2010;
Khadadah et al. 2009; Nafti et al. 2009; Neffen et al. 2010;
Price et al. 2014; Rabe et al. 2004; Sastre et al. 2016; Su et al.
2013; Thompson et al. 2013; Turktas et al. 2010; Zainudin et al.
2005; Zemedkun et al. 2014). Surveys administered included
the Asthma Insights and Reality Survey (AIR), Recognise
Asthma and Link to Symptoms and Experience (REALISE),
Insights and Management Survey (AIM), and International
Asthma Control Test (ACT). The studies reported the rate of
ERVs and hospital admissions among study participants, which
we used to derive a nationwide rate. For countries where more
than one estimate were available from the included studies, we
weighted the rates based on study sample size and used this rate
for the country-wide rate. We categorized the available country
rates by World Health Organization (WHO) regions and World
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Bank income categories (WHO 2017c, 2017b) to generate re-
gional rates (average of available national rates weighted by
sample size) and applied these to countries without data. In regions
where only one estimate was available for the region, the available
estimate was applied to all countries with missing data in that
region. For low-income countries where no rates were available in
the eastern Mediterranean (4 countries), Europe (3), Americas (1),
and Southeast Asia (4), we applied the weighted rate from low-
middle income countries in that region.

As the data set is not age-specific, we applied the ERV rate
among people with asthma uniformly to each age group. The
fraction of the total number of people with asthma visiting an
emergency department in the last year ranged from 7.9% in
France to 52% in Jordan, Kuwait, Lebanon, Oman, and United
Arab Emirates, though approximately 60% of locations for which
survey data were available had fractions in the 20–40% range
(Figures S1 and S2). Estimated pollution-attributable asthma
ERVs would scale linearly with a change in this fraction. We
used this survey approach to maximize consistency across coun-
tries, but the approach is limited by only including approximately
one-quarter of countries globally and by small survey sample size
in each country. Future studies could explore the utility of com-
bining this information with medical records of ERVs to create a
more comprehensive dataset of global asthma-related ERVs. We
were unable to develop fractions for a combined category of
asthma ERVs and hospital admissions from these survey results;
we therefore used ERV fractions with the RRs for combined
ERVs and hospital admissions, judging that ERVs are likely to
capture more asthma exacerbations in comparison with hospital
admissions. The use of ERV fractions with RRs combining
ERVs and hospital admissions may overestimate pollution-
attributable asthma ERVs but likely underestimates pollution-
attributable asthma exacerbations (because pollution-attributable
hospital admissions are not calculated).

Results
Globally, we estimated that 9–23 million asthma ERVs among
all ages in 2015 were attributable to ozone (Figure 2), 5–10 mil-
lion were attributable to PM2:5, and 0.4–0.5 million were attribut-
able to NO2 (0.4%; Figure S4), considering both anthropogenic
and natural sources of pollution. Respectively, ozone, PM2:5, and
NO2-attributable asthma ERVs represented 8–20%, 4–9%, and
0.4% of the 116 million global asthma ERVs in total (Figure 3
and Figure S5). The ranges reflect central RR estimates of three
different epidemiological meta-analyses (Orellano et al. 2017;
Zhang et al. 2016; Zheng et al. 2015). NO2 impacts are likely
underestimated because our methods do not fully capture near-
roadway exposures, which can be ∼ 3 times larger than concen-
trations less than half a kilometer away (Karner et al. 2010),
though there is also likely to be some overlap with the PM2:5-at-
tributable asthma ERV estimates. To evaluate the fraction of the
burden associated with pollution sources that are more easily con-
trollable, we also examined the influence of anthropogenic-only
concentrations by subtracting “natural concentration” (simulated
by setting anthropogenic emissions to zero in the chemical trans-
port model) from total concentrations. Results using total concen-
trations were 2.7 times and 1.4 times higher than impacts of
anthropogenic-only concentrations for ozone (3.4–8.3 million
asthma ERVs, 3–7% of global total) and PM2:5 (3.6–7.3 million
asthma ERVs, 3–6%), respectively (Figure S6). The higher
impact of total versus anthropogenic concentrations is largely
due to sea salt and dust, though some airborne dust is attributable
to human influences, such as land-use changes, population den-
sity, and potentially already-realized effects of anthropogenic cli-
mate change.

We tabulated gridded asthma ERVs by WHO regions. Nearly
half (48%) of estimated ozone-attributable and over half (56%) of
PM2:5-attributable asthma ERVs were estimated in Southeast
Asia (includes India), and western Pacific regions (includes
China; Figure 2). Larger percentages were estimated in Africa
and eastern Mediterranean regions when using total concentra-
tions compared with anthropogenic-only concentrations, driven
by high dust concentrations in these regions. Ozone and PM2:5
were estimated to be responsible for 6–23% and 1–12%, respec-
tively, of all asthma ERVs regionally, depending on the region
and risk estimate applied (Figure 3). For Europe, we estimated
that ozone and PM2:5 were responsible for 7–18% and 2–4% of
asthma ERVs, respectively. The percentage for PM2:5 is lower
than a previous estimate of 15% attributable to road traffic among
children in European cities, which used distance from busy roads
as a proxy for pollutant exposure (Perez et al. 2013).

Of all countries globally, India and China had the most esti-
mated asthma ERVs attributable to total air pollution concentra-
tions, respectively contributing 23% and 10% of global asthma
ERVs estimated to be associated with ozone, 30% and 12% for
PM2:5, and 15% and 17% for NO2 (Figure 4). Comparing
PM2:5-attributable with ozone-attributable asthma ERVs in each
country, whether one of these pollutants dominates over the other
in terms of impacts on asthma exacerbation is not clear (Figure 4
and Figure S7). However, in the Americas and in most European
countries, ozone appears to exert more influence on asthma
ERVs, for both total and anthropogenic concentrations, regard-
less of the RR estimate applied. In Africa, Southeast Asia, west-
ern Pacific regions, and eastern Mediterranean regions, we
estimated substantial impacts for both PM2:5 and ozone, and
which pollutant dominates depends on the RR estimate applied.

We estimated the impacts of air pollution exposure on inci-
dent asthma as a secondary analysis, focusing only on pollutants
and age groups for which epidemiological meta-analyses reported
significant risk estimates: NO2 exposure among all age groups
(all ages, children, and adults), and PM2:5 exposure among chil-
dren (Table 2). Evidence of significant associations between NO2
and asthma incidence appears relatively consistent across epide-
miological meta-analyses (Anderson et al. 2013; Gasana et al.
2012; Khreis et al. 2017; Takenoue et al. 2012) with only one
meta-analysis finding an insignificant association for children
(Bowatte et al. 2015). However, the evidence for PM2:5 is mixed,
with two of the four studies in our literature review reporting sig-
nificant associations with pediatric asthma incidence (Bowatte
et al. 2015; Khreis et al. 2017) and two others reporting no signif-
icant associations (Anderson et al. 2013; Gasana et al. 2012). In
contrast to asthma ERVs for which we estimated impacts of total
concentrations as main results, our main results for air pollution-
attributable asthma incidence used concentrations above “natural
background” levels in each gridcell, because the epidemiological
studies focused on within-city variation rather than between-city
variation. Using central RR estimates from four epidemiological
meta-analyses, we estimated that 400,000 (95% CI: 100,000 to
800,000) to 1.1 million (400,000 to 1.4 million) new pediatric
asthma cases could occur globally each year due to anthropogenic
NO2 concentrations (Figure 5). Here, our satellite-derived NO2
concentration estimates were too coarsely resolved to fully cap-
ture high near-roadway concentrations. Although the epidemio-
logical evidence for associations with NO2 is stronger, our
estimates for PM2:5-attributable asthma incidence are 1–2 orders
of magnitude higher. Using RR estimates from two epidemiologi-
cal meta-analyses (Anderson et al. 2013; Bowatte et al. 2015),
we estimated that 16 million (95% CIs: 9 to 19 million and −5 to
20 million) new pediatric asthma cases could occur globally each
year due to anthropogenic PM2:5 concentrations, translating to
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33% of global pediatric asthma incidence (Figure S8). The per-
centage of national pediatric asthma incidence that may be attrib-
utable to anthropogenic PM2:5 was estimated to be 22% in the
United States, 57% in India, 51% in China, and over 70% in
Bangladesh (Figure S9). Approximately half of estimated NO2-
and PM2:5- attributable new asthma cases were in the Southeast
Asia and western Pacific regions (Figure 5). Estimated asthma
incidence attributable to NO2 and PM2:5 translate to ∼ 1:7million
DALYs among children (∼ 97% of these attributable to PM2:5),
adding ∼ 8% to the most recently estimated DALY burden from
ambient air pollution among all ages (Cohen et al. 2017). Results
are 1.2 and 1.6 times higher when using total concentrations for
NO2 and PM2:5, respectively.

Discussion and Conclusions
We estimated that 9–23 million and 5–10 million annual asthma
emergency room visits globally in 2015 could be attributable to
total ozone and PM2:5 concentrations, respectively, correspond-
ing to 8–20% and 4–9%, respectively, of the annual number of

global visits. The range reflects the application of central risk
estimates from different epidemiological meta-analyses. We esti-
mated that anthropogenic emissions are responsible for approxi-
mately 37% of ozone impacts and 73% of PM2:5 impacts. The
remaining impacts are attributed to naturally occurring ozone pre-
cursor emissions (e.g., from vegetation and lightning) and PM2:5
(e.g., dust, sea salt), though several of these sources are also sub-
ject to human influence from land-use changes, anthropogenic
climate changes, and other interactions between humans and the
environment. India and China were estimated to contribute 23%
and 10%, respectively, of all asthma ERVs attributable to ozone
globally, and 30% and 12%, respectively, of those ERVs attribut-
able to PM2:5.

These results are subject to a number of important limitations
and uncertainties, and estimated pollution-attributable asthma
impacts could be overestimated or underestimated as a result.
First, we assumed that reported associations between PM2:5,
ozone, and NO2 and the asthma exacerbation and incidence out-
comes included in our study are causal associations, following
previous health impact analyses by the U.S. EPA (U.S. EPA
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Figure 2. Global asthma ERVs associated with total ozone and PM2:5 concentrations among all ages in 2015, using RR central estimates from three epidemio-
logical meta-analyses. (A) Asthma ERVs (millions) attributable to ozone and PM2:5 from anthropogenic and all sources. Confidence intervals (CI) (95%) reflect
uncertainty in RR only. (B) Portion of pollution-attributable asthma ERVs occurring in each world region (results identical for all three RR estimates).
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2012, 2015b) and in the literature (e.g., Fann et al. 2012).
Although the IHME Global Burden of Disease study considers
only health effects of PM2:5 and ozone in estimating the ambient
air pollution burden of disease, we also considered NO2, because
of the strength and significance of its associations with asthma
exacerbation and incidence, and because NO2 may be a more pre-
cise marker of combustion-related pollution, because both PM2:5
and ozone can be created by noncombustion sources (e.g., dust,
biogenic precursors). As we used single pollutant epidemiologi-
cal models that did not control for other pollutants, some overlap
among ozone, PM2:5, and NO2 impacts is likely (thus causing our
pollutant-specific results to together overestimate the burden
from combined pollution components) (Winquist et al. 2014).
Similar overlap among health impacts attributed to individual
pollutants has been identified in previous assessments focusing
on mortality effects, for which multipollutant models are avail-
able (WHO 2013). Without direct evaluation, the degree of
underestimation or overestimation from the effects of pollution
mixtures is unknown. Realistically, each of these pollutants may
be an indicator of broader pollution mixtures. The magnitude of
overlap in asthma ERVs attributable to individual pollutants is
currently unquantifiable, though limited evidence suggests that
effects of ozone on asthma ERVs could be independent from
traffic-related pollution (Strickland et al. 2010). In addition, our
reliance on single-pollutant models, though necessary given the
lack of available multipollutant models, leads to uncertainty
regarding the existence and magnitude of associations between
each pollutant and asthma outcomes, because it is possible that
reported associations are sensitive to control for copollutants.

Although we included uncertainty in the RR estimates to
compare across epidemiological meta-analyses, we were unable
to incorporate important uncertainties in other input variables to
the health impact function, including asthma ERV rates and con-
centrations. The country-specific survey data we used to con-
struct the dataset of asthma ERV rates were often limited to a
small sample size, ranging from 100 to 5,063 (across multiple
studies in Italy). It is not clear whether these population subsets
are representative of the general population living with asthma,
and given the small sample sizes, these asthma ERV rates are

highly uncertain. Variation in asthma ERV rates around the world
could be due to differences in asthma prevalence, health services
and how they are used, and degree of asthma management, all of
which vary worldwide and would realistically affect the number
of estimated cases of asthma health end points attributable to air
pollution. We also included only asthma ERVs among the asthma
group, though the epidemiological studies did not distinguish
between asthma ERVs among undiagnosed and diagnosed indi-
viduals. Although the percentage of asthma ERVs among people
with undiagnosed wheezing is lower than that for individuals
diagnosed with asthma, the prevalence of people with undiag-
nosed wheezing could be large (Gerald et al. 2009; Yeatts et al.
2003). However, some ERVs occurring among people with
asthma may not actually be related to asthma, and if this number
is substantial, our results could be overestimates.

We also transferred pooled risk estimates and asthma ERV
rates to countries with no data, though the meta-analyses used
represented a variety of countries on all populated continents
except Africa, and ERV rates were from 55 locations on all popu-
lated continents. Although extrapolating beyond these countries
is necessary in a global assessment, differences in health systems
may exist that we were unable to account for (including acute-
care delivery and diagnostic practices, population characteristics
and behavior, and other factors), that would influence the repre-
sentativeness of data from one country on another. These surveys
may not be adequately nationally representative and could be bi-
ased by the age pattern of individuals in the study. Future studies
could examine availability and consistency of coded emergency
room records from different countries as another data source for
this variable. The direction of influence of these uncertainties
on estimated pollution-attributable asthma ERVs is unknown.
Relying only on asthma ERVs will underestimate the impact of
air pollution on asthma exacerbation more broadly, as it excludes
hospital admissions and less severe subclinical symptoms, such
as respiratory symptoms and lung function decrements (Guarnieri
and Balmes 2014).

Another important limitation is the potential mismatch
between the exposure metrics we used versus those used in the
epidemiology studies. For example, we used the annual average

Figure 3. Percent of global and regional asthma ERVs for all ages in 2015 that are attributable to total ozone (top) and PM2:5 (bottom) concentrations, using
RR central estimates from three epidemiological meta-analyses.
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of the 8-h daily maximum for ozone concentrations, because the
meta-analyses did not clarify whether they used 1-h daily maxi-
mum, 24-h average, or some other metric. Our results may under-
estimate ozone asthma impacts if the RR estimates were derived
from 1-h daily maximum but may overestimate impacts if the RR
estimates were derived from 24-h averages. As has been shown
elsewhere, the choice of concentration metric has important
implications for health impact assessment (Malley et al. 2017).
Additionally, although the asthma-exacerbation epidemiological
studies examined daily exposures, following previous studies
(e.g., Fann et al. 2012), we used annual average concentrations
for computational efficiency and to leverage concentration data-
sets that assimilate satellite observations with chemical transport
models. Using annual averages could lead to error in estimated
pollution-attributable asthma ERVs, particularly for locations
where daily concentrations are highly variable. Our approach is
likely a reasonable approximation in many countries, because the
concentration–response functions applied here are near-linear
throughout a broad range of concentrations, and our assumption
is supported by only 3–8% differences in estimated air pollution-
attributable asthma ERVs using a linear model in comparison

with the log-linear model used for the core results. However, it is
possible that there is an adaptation of individuals to higher-than-
average concentrations, such that only short-term fluctuations
exacerbate asthma and that constant elevated levels do not. This
possibility is not an issue for asthma incidence, which is related to
long-term exposure. We used a multimodel ensemble for ozone
concentration to leverage multiple model parameterizations, but
all models were too coarse to sufficiently capture chemical nonli-
nearities in ozone formation and loss at urban and suburban scales
(e.g., ozone titration). For NO2, our spatial resolution of 0:1� ×
0:1� was too coarse to capture high near-road exposures. We also
applied PM2:5 concentration–response relationships regardless of
particle type or mixture, as is commonly assumed to assess mortal-
ity impacts (Cohen et al. 2017). For asthma incidence, we esti-
mated the impacts of PM2:5 and NO2 concentrations above the
“natural background” as our main results, because the epidemio-
logical studies focused on effects of within-city concentration vari-
ation, rather than between-city variation. This method could still
overestimate asthma incidence from air pollution since back-
ground concentrations within communities are also influenced by
regional anthropogenic emissions.

Figure 4. Asthma ERVs attributable to PM2:5 and ozone in 2015, using Zheng et al. (2015) RR central estimates. Panels show asthma ERVs attributable to
total: (A) ozone, number of cases; (B) ozone, fraction of national asthma ERVs; (C) PM2:5, number of cases (D) PM2:5, fraction of national asthma ERVs.
Panels (E–H) show the same results but using anthropogenic concentrations.
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We have provided first estimates of the global burden of am-
bient air pollution on asthma exacerbation and incidence, though
they are subject to many assumptions and data limitations. We
anticipate that future studies will further advance the input data
and methods piloted here, for example by considering multipollu-
tant epidemiological models. Improved epidemiological data, ex-
posure estimates, and disease rates would enable refinements to
analyses of air pollution’s contribution to the large global asthma
burden. Future studies should also strive to capture asthma
impacts from high near-roadway PM2:5 and NO2 exposures at
finer spatial scales (Khreis et al. 2018; Larkin et al. 2017).
Nevertheless, these first estimates further demonstrate the range
of global public health impacts that may be associated with ambi-
ent air pollution, already considered the leading environmental
health risk factor globally (Cohen et al. 2017; GBD 2016 Risk
Factors Collaborators 2017). These estimates also indicate the
magnitude of the asthma burden that could be avoided by
addressing air pollution.
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